
CS-453 - Project
Dual-versioning STM
Distributed Computing Laboratory

September 24, 2024

1

STM: Serializing transactions

2

C
0

C
1

C
2

C
3

Tx #0 Tx #4

Tx #1

Tx #2

Tx #3

1 0 3 2 4

● The execution on multiple cores is equivalent to a serial execution on a single core.
● The (atomic) execution points are between the start and the end of each transaction: strict serialization.

tx_begin tx_end

STM: With a coarse-grained lock

3

C
0

C
1

C
2

C
3

Tx #0 Tx #4

Tx #1

Tx #2

Tx #3

0

● Works, but only one transaction executes at a time.
● Transactions never fail.

lock unlock

1 2 3 4

STM: Batch & detect conflicts

4

C
0

C
1

C
2

C
3

 Tx #0

 Tx #1

 Tx #2

 Tx #3

● A tad slow because of the batching, but allows concurrent executions.
● Transactions can fail if they conflict.

 Tx #6

 Tx #5

 Tx #4

0 2 1 6 4

new batch

STM: Dual-versioning, briefly

5

● Observation: If all Txs were read-only (RO), no need to check conflicts! ⚡⚡⚡

● Problem: We also need to run read-write (RW) Txs :(

● Solution: Run RO Txs on a RO copy of memory, while RW Txs fight to update a RW copy.
1. Batch Txs for a little while,
2. Run all RO Txs on the RO copy.
3. In parallel, synchronize all RW Txs on the RW copy.
4. Once every Tx (tentatively) executed, update the RO copy to match the RW.

● Notes:
○ RO Txs never fail and are serialized before RW Txs.
○ RW Txs can fail if they conflict.

Dual-versioning batching visualized

6

Read-only Txs Read-Write Txs

Tx #0 Tx #1 Tx #2 Tx #3Batch 1

Tx #4 Tx #5 Tx #6 Tx #7Batch 2

Tx #8 Tx #9 Tx #10 Tx #11

01 4 52 7

end of B1 end of B2

Batch 3

8 9 10 11

end of B3

● All Txs in a batch run in parallel.

● RO Txs never fail and are serialized
before RW Txs of the same batch.

● RW Txs can fail.

● RW Txs write to their own copy of
memory (not to disturb RO Txs).

● The RO memory copy is updated at
the end of a batch.

● Will get you a good grade, but you
need to play some tricks to get a 6.

How to reference memory in the dual-versioned STM?

7

● Usually, memory references are pointers containing (virtual) addresses.

● But, in the case of the dual-versioned STM:
○ Every piece of memory exists in 2 versions.
○ We still want pointer arithmetic to be valid.

● What should my STM pointers contain?

● Good news:
○ The pointers are created by your STM (i.e., when allocating memory).
○ The pointers are only ever used by your STM (via tm_read/tm_write/etc.).
○ They don’t need to hold valid (virtual) addresses (we never dereference them).
○ You just need your STM to understand them.

